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It is well known that conduction in YBa2Cu3O7 (YBCO) is by means of copper “planes” and
“chains,” where planes and chains describe the degree of bonding between copper and
oxygen. Changes of conductivity versus temperature have been used to show that
conduction in YBCO in the normal state is 3-dimensional, while conduction approaching
the onset of the superconducting state is first 2-dimensional and then 3-dimensional. We
have found another method to monitor this 2-to-3 transition. Using square samples, and
measuring the voltage at each corner caused by a current applied to the opposite corners,
one can find the conductivities along the x-axis and the y-axis. The ratio of these
conductivities is unity for homogeneous samples in the normal state. However, in
transition to the superconducting state, the ratio of conductivities changes. We examine
this change as a function of sample purity, sample history, and exposure to an external
magnetic field. Our data are consistent with data reported in the literature, and they
suggest the existence of another state change deep in the superconducting state, which is
only observable with the application of a magnetic field.

Measurements were also carried out to correlate the anisotropy with sample porosity.
Measurements of normal state resistivity, critical temperature, and critical current
characterize the sample’s porosity, and these data affect the anisotropy in the
superconducting state in a manner directly proportional to the porosity. C© 1998 Kluwer
Academic Publishers

1. Introduction
The superconductor YBa2Cu3O7 (YBCO) has been
extensively studied. Two concepts have been the focus
of attention in the present literature. The first deals with
the mode of conduction above the critical temperature
(Tc). From room temperature to (Tc+ x) (wherex is
between 10 and 50), YBCO is metallic in behavior,
and its normal-state conductivity obeys either of two
equations:

ρ = A/T + BT (1)

ρ = A+ BT (2)

Some authors [1, 2] report their data to fit the first
equation, while others’ data fit the second [3–5].
Furthermore, even when data are fit to Equation 2,
they can also be fit to Equation 1, but the correlation
is much poorer [4, 5]. The reason for this difference

is thought to lie in the material’s anisotropy. Perfectly
crystalline samples (i.e., de-twinned single crystals)
exhibit strong anisotropic behavior. If we define the
principal planar axes as a and b, and if we define
the out-of-plane axis as c, thenρa= ρ(CuO2 plane)and
ρ(Cu−O chain)= ρaρb/(ρa− ρb), andρa= A+ BT (with
A almost zero, i.e., no zero-temperature residual resis-
tivity) and ρb= A + BT2 [6–9]. TheT2 dependence
of ρb indicates phonon scattering, while the linear
dependence ofT is strongly metallic. The variation
of ρc with temperature is not completely clear, except
that it exhibits an insulating behavior and is inversely
dependent on temperature (i.e., it goes down asT goes
up); it obeys an equation of the form [10, 11]

ρc = A/T + BT + C (3)

Our samples are homogeneous and polycrystalline.
BecauseρcÀ ρb > ρa, they strongly obey Equation 2
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above (Tc+ X), whereX is approximately 20 for our
samples; their behavior is metallic. Below (Tc+ X), the
conduction process changes. If we define the normal
resistivity (ρN) to be the high-temperature resistivity
(given by Equation 2), then the total resistivity is

1/ρ = 1/ρN +1σ (4)

where 1σ is called the excess conductivity, the
fluctuation conductivity, or (more commonly) the
paraconductivity [5, 12–14]. The paraconductivity
varies with temperature as

1σ ∼ ε−ν (5)

whereε= (T –Tc)/Tc, ν= (2 –d/2), andd is the sam-
ple’s fractal dimension, which represents the behavior
of the conduction process. Note thatν= 1, 1/2 when
d= 2, 3. For YBCO, the paraconductivity occurs in
two stages. When the temperature is less than about
(Tc+ 20) but greater than about (Tc+ 5), the supercon-
duction process starts to occur as CuO2 planes begin
to conduct. Because the conduction is mainly a planar
process at this point,d= 2. When the temperature
drops below approximately (Tc+ 5) but is still above
Tc, the Cu–O chains participate in the conduction pro-
cess, as well. The conduction is fully 3-dimensional,
and d= 3. The temperature ranges over which these
different types of conduction occur are not exact. They
are mainly a function of the oxygen defect of the super-
conductor. If the stoichiometric value of the oxygen in
the YBCO sample isn (with 6< n< 7), then forn= 6
we have a perfect insulator, and forn= 7 the Cu–O
chains act as electron reservoirs for charge transfer
between CuO2 planes [7, 8]. Asn decreases from 7, the
interplane distance increases and the conductivity of the
chains decreases due to oxygen defect states [13, 15].

As the temperature drops belowTc, YBCO is fully
superconducting (although this is impaired by the ap-
plication of a magnetic field, as we discuss later). In
this temperature regimen, the theories and reported data
about 2- and 3-dimensional conduction as well as sam-
ple anisotropy are virtually non-existent. It is difficult
enough to characterize the sample’s anisotropy above
Tc, where the data are comparatively large and stable.
BelowTc, resistivity is greatly diminished, and specific
components of resistivity are even harder to isolate. We
have been able to duplicate the results summarized in
Equations 2, 4, and 5 withd= 2, 3 asT→ Tc. Also,
we extended our study to anisotropy and dimensional-
ity studies well belowTc. We use the four-probe method
of van der Pauw [16] to measure resistivity. Our sam-
ples are 13.5× 13.5× 1.5 mm polycrystalline pellets.
With the sample lying flat in the xy-plane, we abrade a
rounded groove (1/2 mm radius) into each corner where
we apply a silver contact. If we number our corner con-
tacts 1, 2, 3, 4, then a complete van der Pauw measure-
ment requires finding voltage across contacts 1, 2 when
current flows through 3, 4 and finding voltage 2, 3 for
current 1, 4. However, using this data (and no other new
data) one can characterize the sample anisotropy in the
xy-plane [17–19]. After findingρ using the standard

van der Pauw equation, this can be related to values of
ρx andρy as [20]

ρ2 = ρxρy (6)

If we define the anisotropy factor,K , as:

K = ρy/ρx

then for a perfect isotropic materialK = 1. When the
two resistivities are not equal,K can be greater or less
than 1. (See the Appendix.)

[17] and [18] assume that the contacts to the sam-
ple are points in each of the corners of the top square
face. The equations they develop to calculateK are
extremely lengthy and cumbersome to implement. Fur-
thermore, because the contacts are not points in reality
but do have a non-zero dimension, their equations are
slightly inaccurate. [19] and [20] assume the contacts
are lines along the sample corner edges. The equations
are far easier to implement. But even if these “lines”
take on a non-zero dimension and become quarter-
cylinders (as in our case), the equations do not change.
Furthermore, the equations used in [17] and [18] give
the same results as [19] and [20] if the sample length
and width are ten times the sample thickness [21]. For
these reasons, we used the method of [19] and [20] to
calculateK .

2. Experimental results and discussion
Samples of polycrystalline YBCO samples were pre-
pared in the usual manner [22–24]. Using Y2O3,
BaCO3, and CuO as starting materials, a1 : 2 : 3compo-
sition was calcined at 900◦C for 12 h in air. The powder
was ground and pressed into square pellets 13.5 mm
on edge. The thickness was dependent on the stamp-
ing pressure but was nominally 1.5 mm. The pellets
were then treated at 940◦C for 12 h in air. Samples
were abraded at each corner, and electrical contacts
were added, as previously discussed. All of our sam-
ples were prepared to be chemically identical and were
only distinguished by the pressure used to stamp them
into pellets. Table I lists some of the samples used in this
study. They were chosen to cover the range of stamping
pressures used.

It was expected that the different stamping pressures
would affect sample porosity, and this, in turn, would
affect the critical temperature, the resistivity, and the
anisotropy [25–28]. As a first-order approximation, as-
sume that the normal state resistivity varies directly
with porosity [25]. Consider the normal state resistivity
of all samples atT = 130 K. (Other temperatures above
130 K were also chosen, and this analysis repeated; the
results were similar.) Using a least-squares fit, the nor-
mal state resistivity varies with stamping pressureP as

ρ = 2.18× 10−3 exp (0.0223P) (7)

for stamping pressures between 8 and 40 kPSI, and

ρ = 3420P−3.42 (8)
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TABLE I A list of parameters for five selected samples of polycrystalline YBCO versus stamping pressure that include normal state resistivity
parametersA andB, critical temperature, critical current density, and pinning potential

Sample name P [kPSI] A (10−3) B (10−6) Tc [K ] Jc [ A/cm2] U [meV]

Br8 8 1.91 5.15 91.0 59.4± 8.5 16.0± 0.6
Br24 24 2.64 7.49 88.9 59.4± 7.6 15.3± 1.1
Br40 40 5.23 0.36 83.9 25.5± 2.6 8.7± 0.3
Br60 60 1.11 15.41 87.8 26.3± 3.4 25.4± 5.0
Br72 72 0.84 5.96 90.1 32.3± 5.1 33.1± 1.1

for P between 40 and 72 kPSI. In Equations 7 and 8,
resistivity is in units of [ohm–cm] while pressure is in
kPSI. Data showing the variation ofTc with pressure
for five samples are listed in Table I. These data (along
with Equations 7 and 8) are consistent with a “hard
sphere” model to approximate YBCO grains and their
size relative to stamping pressure. Starting with large
grains at 8 kPSI, the grain size decreases with increas-
ing stamping pressure as grains are broken down into
smaller grains; however, the porosity (the percentage
of voids between grains) stays constant or changes very
little. The resistivity is dependent on tunneling between
grains and is thus exponential in behavior [29]. Above
40 kPSI, the grains remain small but fixed in size. In-
creasingP improves the bonding between grains, and
hence the tunneling. However, the larger effect is the
decrease in voids (porosity), which will decrease the
resistivity according to a power law [30]. In a similar
fashion,Tc increases with decreasing porosity [31].

Fig. 1 shows plots of resistivity versus temperature
for five samples chosen to span the range of stamp-
ing pressures. Their parameters are listed in Table I. In
Fig. 1a, no magnetic field is applied, while in Fig. 1b,
a field of 2500 Gauss is used. Data plotted in these
graphs were taken at a constant test current of 65 mA.
For other test currents between 5 and 95 mA, this data
did not change in the normal state. Also, it did not
change in the paraconducting/superconducting state for

Figure 1a Plots of resistivity versus temperature for five of our poly-
crystalline YBCO samples at various stamping pressures show a linear
dependence of the normal state and a sharp drop in the transition to su-
perconduction. Data up to room temperature (not shown) confirms the
linearity of the normal state. See Table I for parameters A and B.

Figure 1b Plots of resistivity versus temperature and stamping pressure
with an applied magnetic field (H ). The width of the transition region to
the superconducting state fits a stretched exponential model.

Fig. 1a. However, there was a major change noted in
Fig. 1b for the paraconducting/superconducting state.
In simple terms, the transition region between normal
and superconducting states widened with the increase
in current at a fixed magnetic field perpendicular to the
sample face. The data in the transition region of 1B
“stretches out” [3, 13, 31] and fits a “stretched” expo-
nential model, where

(ρ/ρ0) = exp[(–U/kT)((Ic/I )n–1)] (9)

and the pinning potentialU , the critical currentIc, and
n are all functions of the magnetic field. We varied
the magnetic field over the range 1000 to 5000 Gauss
and found only small changes in our plot ofρ ver-
susT , as expected [3, 13, 31]. With the magnetic field
at 2500 Gauss, we varied the current between 5 and
95 mA and recorded large changes in the width of the
transition region. Using all of ourρ versusT versus
I data, we did a least-squares fit of Equation 9 to find
n= 0.499± 0.035, which agrees with the value of 0.5
found previously [3]. Our data fit also gave us values
of U and Ic and (using information about sample ge-
ometry) Jc (the critical current density). See Table I.
Critical currents drop as the size of the grain decreases
until P= 40 kPSI, and then currents stabilize and grow
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Figure 2 Plots ofdρ/dT and log(dρ/dT) clearly show the critical tem-
peratureTc for sample BR8. In addition, the log plot shows a state change
below the critical temperature for the application of an external magnetic
field.

slowly as grain size changes very little. Pinning po-
tential, on the other hand, first decreases and then in-
creases, because it is most strongly affected by the in-
crease in contact area between grains.

At this point, we should point out how we found the
critical temperature. There are several methods listed
in the literature [5]:

1. Tc is the midpoint of the transition region between
the resistivity’s normal and superconducting states.

2. Tc is the intersection on the temperature axis of a
straight line formed using theρ versusT data in the
transition region.

3. Tc is the temperature at the onset of superconduc-
tion.

4. Tc is the temperature wheredρ/dT is a maximum.

Because the transition region can vary greatly with ap-
plied magnetic field and injected current, we found
Technique 4 to be the most reliable. Furthermore, we
modified this technique so that we plot log (dρ/dT)
versusT . See Fig. 2 for the results of sample BR8.
A major change in the width of the transition region
caused by the application of the magnetic field does
not obscure the location ofTc. Furthermore, we ob-
serve a state change in the superconducting region, and
this change is not visible in the plot ofdρ/dT.

Using the resistivity data for BR8 shown in Fig. 1
(plus other data taken at many different test currents),
we can extract the sample paraconductivity. This is done
using Equations 4 and 5, and the results are plotted
in Fig. 3. (Note that each single data point in Fig. 3
is actually an average determined by 50 separate data
points, with 30 of these points measured at different
test currents between 5 and 95 mA, and the other 20
accounted for by the variation of the magnetic field.
Error bars are shown.) For 92.5< T < 94.8 K, the data
fit Equation 5 withν= 1/2, and the conduction process
is 3-dimensional, i.e. it is carried out by both copper
“planes” and “chains.” For 94.8< T < 119.7 K, ν= 1,
and the conduction is 2-dimensional; copper “planes”
are the chief conductors. The data above 119.7 K is
too scattered and is considered part of the normal-state

Figure 3 Plot of the paraconductivity versus the reduced tempera-
ture (ε= (T − Tc)/Tc) shows that above 119.7 K the normal-state
resistivity dominates, between 119.7 and 94.8 K the conduction is
2-dimensional (copper planes), and between 94.8 and 91.0 K the con-
duction is 3-dimensional (planes and chains).

region. Thus, the paraconductive state spans a region
from Tc= 91 K to 119.7 K. Data for the other samples
in our study were plotted in a manner similar to Fig. 3.
No significant trend could be detected, but in general
for all samples:

I. ν = 1/2, if Tc < T < (Tc+ x), and 2< x < 7

II . ν = 1, if (Tc+ x) < T < (Tc+ y),

and 15< y < 25

The results of measuring the YBCO paraconductivity
are clear. There is a 2- to 3-dimensional transition in
the conduction process when the temperature changes.
Furthermore, these results do not change whether there
is a magnetic field applied to the sample. The applica-
tion of the magnetic field (as shown in Fig. 1) increases
the effects of grain-boundary scattering and “stretches”
the transition region. Hence, the data in Fig. 3 are not
affected by grain-boundary scattering but only by tran-
sitions within each grain.

Another way to measure the 2- to 3-dimensional tran-
sition is by using the modified van der Pauw’s equation
to find K . Fig. 4 shows plots ofK versusT for sample
BR8 with no magnetic field applied Fig. 4a and with
a 2500 Gauss field (Fig. 4b). With no field,K = 1, ex-
cept in the region where paraconductivity is strongest
(from Tc= 91 to about 120 K). This coincides with
the range of paraconductivity mapped in Fig. 3. For a
perfect isotropic conductor,K = 1. Therefore, as the
temperature drops below 120 K, the anisotropy of each
grain undergoing a transition to 2-dimensional copper
plane conduction causesK to deviate from unity. The
strength of the deviation ofK from unity is important
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Figure 4a Plots of the van der Pauw anisotropy factorK versus tem-
perature show the sample to be isotropic at all temperatures except in
the paraconductive region. Grain-boundary dominance is apparent as a
low test current (5 mA) causes almost no significant deviation ofK from
unity while a strong test current (95 mA) produces a deviation of 38%,
i.e., Kmax= 1.38.

Figure 4b Plots ofK versus temperature show no significant deviations
from unity in the paraconductive region when an applied magnetic field
causes grain-boundary dominance. However, there is a significant devia-
tion corresponding to the width of the superconducting transition region
and another deviation closer to absolute zero. The second deviation is
not repeatable but over 100 test runs fell within the cross-hatched region
shown.

but only on a relative basis. As shown in Fig. 4a for
sample BR8, the stronger the test current the stronger
the deviation inK . However, when we compared this
deviation in K to other samples formed at the same
stamping pressure, the deviations were markedly dif-
ferent. Although BR8 reached a maximum deviation
of 38% at 95 mA, maximum deviations for identical
samples were as low as 10% or as high as 60%.

To better understand the results in Fig. 4a, we need
to consider what happens when a magnetic field is ap-
plied. As shown in Fig. 4b, the deviations ofK in the
paraconductivity region disappear. The paraconductiv-
ity measurements shown in Fig. 3 are due only to effects
within each grain. They are not grain-boundary depen-
dent. By contrast, the modified van der Pauw parameter
K is grain-boundary dependent. In Fig. 4b, the mag-
netic field increases the effect of the grain boundaries.

This widens the transition region as the grain bound-
aries take on the characteristics of the “stretched” expo-
nential. The dominance of the grain boundaries causes
the anisotropy of each grain to be hidden by the con-
duction processes in the sample as a whole. We can
also see the effects of grain boundaries in Fig. 4a. when
no magnetic field is applied but when the test current
is low (5 mA). There is a threshold voltage at each
grain boundary that charge carriers must have in order
to tunnel between grains. At low current, the voltage
drop within each grain would be much smaller than
the threshold voltage at each grain boundary. Hence,
the effects of the grain boundaries at low current would
be to make the sample have an isotropic conduction
and K would remain approximately unity throughout
the temperature range of paraconductivity.

If our samples were single-crystal, deviations inK
would measure anisotropy in the xy-plane. Because it
is possible for each grain in a polycrystal to have an
orientation different than any other grain, it is possi-
ble for K never to deviate from unity: 2-dimensional
conduction in one grain might favor conduction in the
x-direction while the same 2-dimensional conduction
process in another grain would compensate for this by
favoring y-direction conduction, and this would hap-
pen in all grains such that the average conduction was
isotropic. Therefore, the fact thatK does deviate from
unity in certain cases for every sample we tested indi-
cates that there are “statistically” preferred orientation
angles for the sample as a whole. In Fig. 4b, the ap-
plication of a magnetic field erases the effect of these
“preferred” orientations in the paraconductivity region
when the grain boundary effects dominate. However,
the application of the magnetic field exposes two new
states in the superconducting region. In the first case,
there is marked anisotropy for 70< T < Tc= 91 K , the
width of the transition region. With no magnetic field,
the width of the transition region was almost zero. The
magnetic field not only widens the transition in the su-
perconducting state, but it also marks its presence by
the deviation ofK from unity. This phenomenon oc-
curs not just for BR8 but for our other samples, as well.
The second state is more confusing. Our values ofK
for 70> T > 0 K deviated from unity each time we
ran a measurement in this temperature range. How-
ever, these measurements were not repeatable. They
did, however, fall into a range that we show by cross-
hatched lines in Fig. 4b. This state is stable enough to
have limits placed onK , but it is unstable enough to
be non-repeatable from one test to the next. Data rep-
resented by the cross-hatch lines are the result of 100
test runs at many different test currents with the various
currents being changed or held fixed from one run to
another.

3. Conclusion
Our investigation of 2- and 3-dimensional conduction
in the YBCO superconductor has confirmed the useful-
ness of the paraconductivity in identifying the temper-
ature ranges over which copper planes and chains con-
duct. Furthermore, this is an intra-grain phenomenon,
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and it is not changed by the application of an external
magnetic field. Application of a magnetic field does in-
crease the width of the temperature range over which
each sample becomes fully superconducting, and the
resistivity in this transition region fits a “stretched” ex-
ponential model very well. This provides us with in-
formation about the critical current and pinning poten-
tial and allows another technique for the study of grain
boundary effects.

Using the van der Pauw technique to measure the
resistivity and the anisotropy in resistivity, we had an-
other tool to study dimensional conduction in our poly-
crystalline samples. The anisotropy, measured in this
way, is affected by the sample as a whole, including
the grain boundaries. If the orientation of each grain
relative to all other grains were random, the “average”
anisotropy for the whole sample would disappear. Our
results show that there is some non-randomness in all
samples, which produces a net anisotropy for the sam-
ple taken as a whole. This anisotropy is pronounced
in the paraconductive temperature range, except at low
test currents and/or high magnetic field strengths, where
grain-boundary tunneling tends to create an average
isotropy in the sample.

The van der Pauw technique of studying anisotropy is
not as sharp as the study of the paraconductivity, when
studying the paraconductive temperature range. How-
ever, it does complement the study of sample paracon-
ductivity, and it is useful in studying anisotropy in the
deep superconducting state (T < Tc). In deep supercon-
ductivity and with no magnetic field applied, the sample
appears isotropic. In deep superconductivity and with
an applied magnetic field, two states are visible in the
appearance of strong anisotropy. The first state corre-
sponds to the temperature range belowTc over which
the sample becomes fully superconducting. (With no
magnetic field applied, this temperature range is ap-
proximately zero.) The second state is chaotic and is
located closer to absolute zero. Evidence of this state
vanishes when there is no magnetic field applied.

In addition to our study of dimensional conduction,
we found a correlation between sample porosity and
resistive parameters that supports earlier theories.

4. Appendix
If a sample is in the form of a disc whose thickness is
uniform but small compared to the dimensions of the
sample face, then van der Pauw’s theory can be used to
measure the sample’s resistivity [16]. The sample can
have an arbitrary shape on its face (xy-plane), but it must
have a constant thickness (z-axis). With four contacts
placed clockwise around the perimeter, the resistivity
can be calculated from voltage and current readings as

0= exp[−(ρ/d)(V12/I34)]

+ exp[−(ρ/d)(V23/I41)] − 1 (10)

whered is the sample thickness and where all voltage-
to-current ratios (VTCRs) are positive.V12 is measured
across contacts 1, 2 while currentI34 enters contact
3 and leaves at contact 4, etc. Because our data were

collected by computer, we measured all eight sets of
permutations of the data shown in Equation 10. For ex-
ample, we used (10) withV23, V34, I41, I12 and then
with V34, V41, I12, I23, and then withV41, I12, I23, I34.
We also reversed the polarities of the voltages and cur-
rents and measured these. This gave eight readings for
the resistivity. In addition, multiple readings of each set
of measurements were taken (typically 20, but as high
as 100). Using 20, the average resistivity at one single
temperature was the average of 160 (i.e., 8× 20) mea-
surements. The standard deviation of resistivity data
was also calculated and found to be less than 0.1%.
We solved Equation 10 to find resistivity by a sim-
ple “brute force” method. We assumed resistivity to be
0.000,001 and calculated the right-hand side (RHS) of
Equation 10. We then let it be 0.000,002 and recalcu-
lated the RHS. We continued in this fashion until the
RHS had passed zero.

Because our samples were square, the geometry al-
lowed us to extend van der Pauw’s theory to measure
K = (ρy/ρx) [19, 20]. This theory is an extension of
the concept of image charges in electromagnetic the-
ory, but in this case, image currents are used. With
the sample in the xy-plane and with corners at (0, 0),
(0,w), (w, 0) and (w,w) (w is the sample width), cur-
rent, I , enters at (0, 0) and leaves at (0,w). Solving
this is the same as solving for a sample of the same
material but which is an infinite sheet, with current
4I entering the sample at (0, 0) and leaving (−4I ) at
(0,w) and with image currents of 4I at the points (2mw,
2nw) and currents of−4I ) at ((2m+1)w, 2nw), where
m andn are integers ranging from negative to positive
infinity. Using superposition to find the net voltage of
all of these image currents yields

0= (πd/8ρ)(V12/I34)+
j =∞∑
j = 0

ln(tanh (π ( j + 0.5)K ))

(11)
In Equation 11 and later in 12, all VTCRs are pos-
itive. Using Equation 11,K can be solved with ex-
cellent accuracy by truncating the series atj = 20. A
“brute force” solution, though slow, is both accurate
and manageable. We start by lettingK = 20.000 and
then solve the RHS in Equation 11. We repeat for
K = 19.999, 19.998, etc. When the RHS crosses zero,
the value ofK is known with an error of less than
0.001. If more accuracy is desired, the process may be
extended to the fourth decimal place.

One now uses the method of image currents as above
but letting the current, 4I , enter at (0, 0) and leave at
(w, 0). Then the equation to solve becomes

0= (πd/8ρ)(V23/I41)+
j =∞∑
j = 0

ln(tanh(π ( j + 0.5)/K ))

(12)
The solution of Equation 12 will give another value
of K . Also, Equations 11 and 12 can be solved again
using the VTCRs ofV34/I12 andV41/I23. Furthermore,
all of these calculations can be done for a reversal of
the polarity of the currents and voltages. This will give
the eight values ofK . If 20 sets of measurements are

5658



          

P1: SNK 846-97 December 15, 1998 12:35

taken, the average value ofK and a standard deviation
are based on 160 measurements. Standard deviations
for K were less than 0.4%.
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