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It is well known that conduction in YBa,Cu307 (YBCO) is by means of copper “planes” and
“chains,” where planes and chains describe the degree of bonding between copper and
oxygen. Changes of conductivity versus temperature have been used to show that
conduction in YBCO in the normal state is 3-dimensional, while conduction approaching
the onset of the superconducting state is first 2-dimensional and then 3-dimensional. We
have found another method to monitor this 2-to-3 transition. Using square samples, and
measuring the voltage at each corner caused by a current applied to the opposite corners,
one can find the conductivities along the x-axis and the y-axis. The ratio of these
conductivities is unity for homogeneous samples in the normal state. However, in
transition to the superconducting state, the ratio of conductivities changes. We examine
this change as a function of sample purity, sample history, and exposure to an external
magnetic field. Our data are consistent with data reported in the literature, and they
suggest the existence of another state change deep in the superconducting state, which is
only observable with the application of a magnetic field.

Measurements were also carried out to correlate the anisotropy with sample porosity.
Measurements of normal state resistivity, critical temperature, and critical current
characterize the sample’s porosity, and these data affect the anisotropy in the
superconducting state in a manner directly proportional to the porosity. © 1998 Kluwer
Academic Publishers

1. Introduction is thought to lie in the material’s anisotropy. Perfectly
The superconductor YBEwO; (YBCO) has been crystalline samples (i.e., de-twinned single crystals)
extensively studied. Two concepts have been the focuexhibit strong anisotropic behavior. If we define the
of attention in the present literature. The first deals withprincipal planar axes as a and b, and if we define
the mode of conduction above the critical temperaturéhe out-of-plane axis as ¢, ther = pcuo2 planeyand
(Te). From room temperature ta{+ x) (wherex is  pcu-o chain)= PaPb/(Pa— pb), andpa= A+ BT (with
between 10 and 50), YBCO is metallic in behavior, A almost zero, i.e., no zero-temperature residual resis-
and its normal-state conductivity obeys either of twotivity) and p, = A + BT? [6-9]. The T? dependence

equations: of pp indicates phonon scattering, while the linear
dependence of is strongly metallic. The variation

p=A/T+BT (1)  of pc with temperature is not completely clear, except
that it exhibits an insulating behavior and is inversel

p=A+BT @) g y

dependent on temperature (i.e., it goes down gees

i i . _.up); it obeys an equation of the form [10, 11]
Some authors [1, 2] report their data to fit the first

equation, while others’ data fit the second [3-5]. pc=A/T+BT+C ©)
Furthermore, even when data are fit to Equation 2,

they can also be fit to Equation 1, but the correlationOur samples are homogeneous and polycrystalline.
is much poorer [4, 5]. The reason for this differenceBecausey. > pp > pa, they strongly obey Equation 2
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above [ + X), whereX is approximately 20 for our van der Pauw equation, this can be related to values of
samples; their behavior is metallic. BeloW. @ X),the  px andpy as [20]

conduction process changes. If we define the normal

resistivity (on) to be the high-temperature resistivity 0% = px Py (6)
(given by Equation 2), then the total resistivity is

If we define the anisotropy factdk, as:
1/p=1/pn + Ao 4)
K = py/px
where Ao is called the excess conductivity, the
fluctuation conductivity, or (more commonly) the then for a perfect isotropic materi&l = 1. When the
paraconductivity [5, 12-14]. The paraconductivity two resistivities are not equak can be greater or less

varies with temperature as than 1. (See the Appendix.)
[17] and [18] assume that the contacts to the sam-
Ag ~ gV (5) ple are points in each of the corners of the top square

face. The equations they develop to calculKteare
wheres = (T =Tg)/Te, v = (2—d/2), andd is the sam- extremely lengthy and cumbersome to implement. Fur-

ple’s fractal dimension, which represents the behaviofh€rmore, because the contacts are not points in reality
of the conduction process. Note that 1, 1/2 when but do have a non-zero dimension, their equations are
d=2,3. For YBCO, the paraconductivity occurs in Slightly inaccurate. [19] and [20] assume the contacts
two stages. When the temperature is less than abo@f© lines along the sample comer edges. The equations
(T + 20) but greater than aboE{+ 5), the supercon- &€ far easier to implement. But even if these “lines”
duction process starts to occur as Guflanes begin {@keé on a non-zero dimension and become quarter-
to conduct. Because the conduction is mainly a planagYlinders (as in our case), the equations do not change.
process at this pointd =2. When the temperature Furthermore, the equations used in [17] and [18] give
drops below approximatelyT¢ + 5) but is still above ~the same results as [19] and [20] if the sample length
T., the Cu-O chains participate in the conduction pro_and width are ten times the sample thickness [21]. For
cess, as well. The conduction is fully 3-dimensional,tNese reasons, we used the method of [19] and [20] to

andd =3. The temperature ranges over which thesgalculateK.
different types of conduction occur are not exact. They
are mainly a function of the oxygen defect of the super-
conductor. If the stoichiometric value of the oxygen in 2- Experimental results and discussion
the YBCO sample is (with 6 <n <7), thenfom=6  Samples of polycrystalline YBCO samples were pre-
we have a perfect insulator, and foe=7 the Cu—O Pared in the usual manner [22-24]. UsingC%,
chains act as electron reservoirs for charge transfdp@CQs, and CuO as starting materiald, a2 : 3compo-
between Cu@planes [7, 8] As) decreases from 7, the sition was calcined at 90@ Tor 12 hinair. The pOWder
interplane distance increases and the conductivity of th@as ground and pressed into square pellets 13.5 mm
chains decreases due to oxygen defect states [13, 15PN €dge. The thickness was dependent on the stamp-
As the temperature drops beldly, YBCO is fully ~ Ing pressure but was nominally 1.5 mm. The pellets
superconducting (although this is impaired by the apWwere then treated at 94X for 12 h in air. Samples
plication of a magnetic field, as we discuss later). Inwere abraded at each corner, and electrical contacts
this temperature regimen, the theories and reported da¥sere added, as previously discussed. All of our sam-
about 2- and 3-dimensional conduction as well as samPles were prepared to be chemically identical and were
ple anisotropy are virtually non-existent. It is difficult Only distinguished by the pressure used to stamp them
enough to characterize the sample’s anisotropy abov@to pellets. Table | lists some of the samples used in thls
T, where the data are comparatively large and stablestudy. They were chosen to cover the range of stamping
Below T, resistivity is greatly diminished, and specific Pressures used. _ _
components of resistivity are even harder to isolate. We 1t was expected that the different stamping pressures
have been able to duplicate the results summarized iwould affect sample porosity, and this, in turn, would
Equations 2, 4, and 5 witl=2, 3 asT — T.. Also, affect the critical temperature, the resistivity, and the
we extended our study to anisotropy and dimensional@nisotropy [25-28]. As a first-order approximation, as-
ity studies well belowl.. We use the four-probe method Sume that the normal state resistivity varies directly
of van der Pauw [16] to measure resistivity. Our sam-With porosity [25]. Consider the normal state resistivity
ples are 13.5 13.5x 1.5 mm polycrystalline pellets. Of all samples al =130K. (Other temperatures above
With the sample lying flat in the xy-plane, we abrade al30 Kwere aleo _chosen,_ and this analysis repeated; the
rounded groove (1/2 mm radius) into each corner whergesults were similar.) Using a least-squares fit, the nor-
we apply a silver contact. If we number our corner con-mal state resistivity varies with stamping presskras
tacts 1, 2, 3, 4, then a complete van der Pauw measure-
ment requires finding voltage across contacts 1, 2 when p = 2.18 x 10 %exp (00223P) (7)
current flows through 3, 4 and finding voltage 2, 3 for
current 1, 4. However, using this data (and no other nevior stamping pressures between 8 and 40 kPSI, and
data) one can characterize the sample anisotropy in the
xy-plane [17-19]. After finding using the standard p = 3420pP 342 (8)
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TABLE | A list of parameters for five selected samples of polycrystalline YBCO versus stamping pressure that include normal state resistivity
parameterA and B, critical temperature, critical current density, and pinning potential

Sample name P [kPSI] A(1073%) B (10°9) Te [K] Je [A/cn?] U [meV]
Brg 8 1.91 5.15 91.0 5948.5 16.0+0.6
Br24 24 2.64 7.49 88.9 59:47.6 15.3+1.1
Br40 40 5.23 0.36 83.9 2552.6 8.7+0.3
Br60 60 1.11 15.41 87.8 2683.4 25.4+5.0
Br72 72 0.84 5.96 90.1 3285.1 33.1+1.1
for P between 40 and 72 kPSI. In Equations 7 and 8, Resistivity Vs. Temp.

resistivity is in units of [ohm—cm] while pressure is in Various Pressure

kPSI. Data showing the variation @t with pressure 6e-3 L .-

for five samples are listed in Table I. These data (along s

with Equations 7 and 8) are consistent with a “hard <ok 40K P8

sphere” model to approximate YBCO grains and their  °* ° v~ €0cps)

size relative to stamping pressure. Starting with large
grains at 8 kPSI, the grain size decreases with increasg 4e-3
ing stamping pressure as grains are broken down intéé)
smaller grains; however, the porosity (the percentages

of voids between grains) stays constant or changes verz %
little. The resistivity is dependent on tunneling between %
grains and is thus exponential in behavior [29]. Above & 4¢3
40 kPSI, the grains remain small but fixed in size. In-
creasingP improves the bonding between grains, and
hence the tunneling. However, the larger effect is the 1&-2
decrease in voids (porosity), which will decrease the
resistivity according to a power law [30]. In a similar
fashion, T increases with decreasing porosity [31].

Fig. 1 shows plots of resistivity versus temperature
for five samples chosen to span the range of stamp-
ing pressures. Their parameters are listed in Table I. Iffigure 1b Plots of resistivity versus temperature and stamping pressure
Fig. 1a, no magnetic field is applied, while in Fig. 1b, with an applied m_agneticfie_ld—().The width ofthetra_nsition region to
a field of 2500 Gauss is used. Data plotted in thesg'e superconducting state fits a stretched exponential model.
graphs were taken at a constant test current of 65 mA.

For other test currents between 5 and 95 mA, this data_ ) )
did not change in the normal state. Also, it did notFig- 1a. However, there was a major change noted in
change in the paraconducting/superconducting state fdrig- 1b for the paraconducting/superconducting state.
In simple terms, the transition region between normal
and superconducting states widened with the increase

Resistivity Vs.Temp. in current at a fixed magnetic field perpendicular to the

e s sample face. The data in the transition region of 1B

L R A A AR AL RLRARND “stretches out” [3, 13, 31] and fits a “stretched” expo-

1=65mA
Thickness:1.5mm
Size:(1 3.3mm)2

Oe+0 -
10 20 30 40 50 60 70 80 90 100 110 120
Temp.(K)

6e-3 T

v ke nential model, where
5e.3 |~ 40k psi
v 60K psi
N Ry (p/po) = exp[(-U/KT)((Ie/)™-1)]  (9)
’E‘ 4e-3 — Thickness:1.5mm
Q Size:(13.3)2
£ and the pinning potentid, the critical current., and
g %3 ‘E n are all functions of the magnetic field. We varied
2., 0 the magnetic field over the range 1000 to 5000 Gauss
© 23 T and found only small changes in our plot pfver-
susT, as expected [3, 13, 31]. With the magnetic field
163 - at 2500 Gauss, we varied the current between 5 and
E 95 mA and recorded large changes in the width of the
040 4ot r oty g transition region. Using all of oup versusT versus

10 20 30 40 50 60 70 | data, we did a least-squares fit of Equation 9 to find
Temp.(K) n=0.499+ 0.035, which agrees with the value of 0.5
found previously [3]. Our data fit also gave us values

Figure 1a Plots of resistivity versus temperature for five of our poly- of U andl. and (using information about sample ge-
crystalline YBCO samples at various stamping pressures show a linea ¢

dependence of the normal state and a sharp drop in the transition to sémetry) Je (the critical Curren_t denSIty)' See Table .
perconduction. Data up to room temperature (not shown) confirms thé:m_ma-I currents drop as the size of the grain decreases
linearity of the normal state. See Table | for parameters A and B. until P =40 kPSlI, and then currents stabilize and grow
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Log (dp/dT) Vs. Temperature

1e-3
—s— H = 2500 Gauss
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-4 | —®— dp/dt vs. Temperature

T 8e-4
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L 6e-4
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- 4e-4

Log(dp/dT)
&
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T 3e-4
- 2.4

+ 1e-4

~ 0
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Figure 2 Plots ofdp/dT and logfe/dT) clearly show the critical tem-
peraturel; for sample BR8. In addition, the log plot shows a state changeo 7 o’
below the critical temperature for the application of an external magneti
field.

slowly as grain size changes very little. Pinning po- _{ _'3 ' '

tential, on the other hand, first decreases and then ii Ln(e)

creases, because it is most strongly affected by the in-

crease in contact area between grains. Figure 3 Plot of the paraconductivity versus the reduced tempera-
At this point, we should point out how we found the ture ¢=(T —Tc)/T) shows that above 119.7 K the normal-state

critical tempera‘[ure_ There are several methods |istetPSiStiVity dominates, between 119.7 and 94.8 K the conduction is
in the literature [5] 2-dimensional (copper planes), and between 94.8 and 91.0 K the con-

duction is 3-dimensional (planes and chains).

1. T is the midpoint of the transition region between
the resistivity’s normal and superconducting states. region. Thus, the paraconductive state spans a region
2. T. is the intersection on the temperature axis of arom T =91 K to 119.7 K. Data for the other samples
straight line formed using the versusT data in the in our study were plotted in a manner similar to Fig. 3.

transition region. No significant trend could be detected, but in general
3. T is the temperature at the onset of superconducfor all samples:

tion.
4. T.isthetemperature whedp /d T is a maximum. lLv=1/2,if Te<T < (T¢c+X), and 2<x <7

Because the transition region can vary greatly with ap- Hv="11f (Te+x) <T < (Te+Y),
plied magnetic field and injected current, we found and 15< y < 25
Technique 4 to be the most reliable. Furthermore, we
modified this technique so that we plot lodo(dT)  The results of measuring the YBCO paraconductivity
versusT. See Fig. 2 for the results of sample BR8. are clear. There is a 2- to 3-dimensional transition in
A major change in the width of the transition region the conduction process when the temperature changes.
caused by the application of the magnetic field doeg-urthermore, these results do not change whether there
not obscure the location of.. Furthermore, we ob- is a magnetic field applied to the sample. The applica-
serve a state change in the superconducting region, artichn of the magnetic field (as shown in Fig. 1) increases
this change is not visible in the plot dp/dT. the effects of grain-boundary scattering and “stretches”
Using the resistivity data for BR8 shown in Fig. 1 the transition region. Hence, the data in Fig. 3 are not
(plus other data taken at many different test currents)affected by grain-boundary scattering but only by tran-
we can extract the sample paraconductivity. This is donsitions within each grain.
using Equations 4 and 5, and the results are plotted Anotherway to measure the 2-to 3-dimensional tran-
in Fig. 3. (Note that each single data point in Fig. 3sition is by using the modified van der Pauw’s equation
is actually an average determined by 50 separate data find K. Fig. 4 shows plots oK versusT for sample
points, with 30 of these points measured at differenBR8 with no magnetic field applied Fig. 4a and with
test currents between 5 and 95 mA, and the other 2@ 2500 Gauss field (Fig. 4b). With no field,= 1, ex-
accounted for by the variation of the magnetic field.cept in the region where paraconductivity is strongest
Error bars are shown.) For 92<5T <94.8 K, thedata (from Tc=91 to about 120 K). This coincides with
fit Equation 5 withv = 1/2, and the conduction process the range of paraconductivity mapped in Fig. 3. For a
is 3-dimensional, i.e. it is carried out by both copperperfect isotropic conductoK =1. Therefore, as the
“planes” and “chains.” For98 < T <1197 K,v=1, temperature drops below 120 K, the anisotropy of each
and the conduction is 2-dimensional; copper “planes’grain undergoing a transition to 2-dimensional copper
are the chief conductors. The data above 119.7 K iplane conduction causés to deviate from unity. The
too scattered and is considered part of the normal-statgrength of the deviation df from unity is important
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Anisotropy Vs. Temperature This widens the transition region as the grain bound-

[ E—— aries take on the characteristics of the “stretched” expo-
—— 65mA nential. The dominance of the grain boundaries causes
1 ST BA the anisotropy of each grain to be hidden by the con-

duction processes in the sample as a whole. We can
also see the effects of grain boundaries in Fig. 4a. when
no magnetic field is applied but when the test current
is low (5 mA). There is a threshold voltage at each
grain boundary that charge carriers must have in order
to tunnel between grains. At low current, the voltage
drop within each grain would be much smaller than
the threshold voltage at each grain boundary. Hence,
the effects of the grain boundaries at low current would
0 2 4 e e 1o 10 1o Dbeto make the sample have an isotropic conduction

Py /Py

K=

Temperature (K) and K would remain approximately unity throughout
the temperature range of paraconductivity.
Figure 4a Plots of the van der Pauw anisotropy factorversus tem- If our samples were single-crystal deviationskin

perature show the sample to b? isotropic at all t'empere'ttures except 'Would measure anisotropy in the xy—plane. Because it
the paraconductive region. Grain-boundary dominance is apparent as.a

low test current (5 mA) causes almost no significant deviatidg 6bm 1S .possi_ble fo_r each grain in a polycrys'tal .tO. have an
unity while a strong test current (95 mA) produces a deviation of 38%,0rientation different than any other grain, it is possi-

i.e., Kmax=1.38. ble for K never to deviate from unity: 2-dimensional
conduction in one grain might favor conduction in the
Anisotropy vs. Temperature x-direction while the same 2-dimensional conduction
110 process in another grain would compensate for this by
1.08 4 favoring y-direction conduction, and this would hap-
e pen in all grains such that the average conduction was

1.04
1.02
1.00
0.98
0.96
0.94
0.92
0.90

isotropic. Therefore, the fact thit does deviate from
unity in certain cases for every sample we tested indi-
cates that there are “statistically” preferred orientation
angles for the sample as a whole. In Fig. 4b, the ap-
plication of a magnetic field erases the effect of these
“preferred” orientations in the paraconductivity region
0.88 . .
0.6 | when the grain boundary effects dominate. However,
084 | the application of the magnetic field exposes two new
082 1 states in the superconducting region. In the first case,
o0 o w s m e  me  u  thereis marked anisotropy for 20T < T =91K, the
width of the transition region. With no magnetic field,
the width of the transition region was almost zero. The
Figure 4b Plots ofK versus temperature show no significant deviations magnetic field not only widens the transition in the su-

from unity in the paraconductive region when an applied magnetic field erconducting state. but it also marks its presence by
causes grain-boundary dominance. However, there is a significant devi he deviation ofK frc;m unitv. This phenomenon oc-
tion corresponding to the width of the superconducting transition region Y. p

and another deviation closer to absolute zero. The second deviation §Ur'S not just for BR8 but for our other samples, as well.
not repeatable but over 100 test runs fell within the cross-hatched regiod he second state is more confusing. Our valueK of
shown. for 70> T > 0 K deviated from unity each time we
ran a measurement in this temperature range. How-
) ] o ever, these measurements were not repeatable. They
but only on a relative basis. As shown in Fig. 4a for gig however, fall into a range that we show by cross-
sample BR8, the stronger the test current the stronge{aiched lines in Fig. 4b. This state is stable enough to
the deviation inK. However, when we compared this haye |imits placed orK, but it is unstable enough to
deviation inK to other samples formed at the samepg pon-repeatable from one test to the next. Data rep-
stamping pressure, the deviations were markedly difresented by the cross-hatch lines are the result of 100

ferent. Although BR8 reached a maximum deviationtest runs at many different test currents with the various
of 38% at 95 mA, maximum deviations for identical cyrrents being changed or held fixed from one run to

samples were as low as 10% or as high as 60%. another.

To better understand the results in Fig. 4a, we need
to consider what happens when a magnetic field is ap-
plied. As shown in Fig. 4b, the deviations Kfin the
paraconductivity region disappear. The paraconductiv3d. Conclusion
ity measurements shown in Fig. 3 are due only to effect©ur investigation of 2- and 3-dimensional conduction
within each grain. They are not grain-boundary depenin the YBCO superconductor has confirmed the useful-
dent. By contrast, the modified van der Pauw parameteamess of the paraconductivity in identifying the temper-
K is grain-boundary dependent. In Fig. 4b, the mag-ature ranges over which copper planes and chains con-
netic field increases the effect of the grain boundariesduct. Furthermore, this is an intra-grain phenomenon,

(0,70

K=

Temperature (K)
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and it is not changed by the application of an externaktollected by computer, we measured all eight sets of
magnetic field. Application of a magnetic field does in- permutations of the data shown in Equation 10. For ex-
crease the width of the temperature range over whiclample, we used (10) witN>3, Va4, 141, 112 and then
each sample becomes fully superconducting, and theith Vag, Va1, 112, l23, and then withVyg, 112, 123, 134.
resistivity in this transition region fits a “stretched” ex- We also reversed the polarities of the voltages and cur-
ponential model very well. This provides us with in- rents and measured these. This gave eight readings for
formation about the critical current and pinning poten-the resistivity. In addition, multiple readings of each set
tial and allows another technique for the study of grainof measurements were taken (typically 20, but as high
boundary effects. as 100). Using 20, the average resistivity at one single
Using the van der Pauw technique to measure théemperature was the average of 160 (i.ex,8) mea-
resistivity and the anisotropy in resistivity, we had an-surements. The standard deviation of resistivity data
other tool to study dimensional conduction in our poly-was also calculated and found to be less than 0.1%.
crystalline samples. The anisotropy, measured in thi$Ve solved Equation 10 to find resistivity by a sim-
way, is affected by the sample as a whole, includingple “brute force” method. We assumed resistivity to be
the grain boundaries. If the orientation of each grain0.000,001 and calculated the right-hand side (RHS) of
relative to all other grains were random, the “average™Equation 10. We then let it be 0.000,002 and recalcu-
anisotropy for the whole sample would disappear. Outated the RHS. We continued in this fashion until the
results show that there is some non-randomness in aRHS had passed zero.
samples, which produces a net anisotropy for the sam- Because our samples were square, the geometry al-
ple taken as a whole. This anisotropy is pronouncedowed us to extend van der Pauw’s theory to measure
in the paraconductive temperature range, except at loW = (oy/pox) [19, 20]. This theory is an extension of
test currents and/or high magnetic field strengths, wherthe concept of image charges in electromagnetic the-
grain-boundary tunneling tends to create an averagery, but in this case, image currents are used. With
isotropy in the sample. the sample in the xy-plane and with corners at (0, 0),
The van der Pauw technique of studying anisotropy i40, w), (w, 0) and v, w) (w is the sample width), cur-
not as sharp as the study of the paraconductivity, wherent, |, enters at (0, 0) and leaves at (0). Solving
studying the paraconductive temperature range. Howthis is the same as solving for a sample of the same
ever, it does complement the study of sample paracormaterial but which is an infinite sheet, with current
ductivity, and it is useful in studying anisotropy in the 4l entering the sample at (0, 0) and leavirgd( ) at
deep superconducting stalle € T¢). In deep supercon- (0,w) and withimage currents oi 4t the points (Bw,
ductivity and with no magnetic field applied, the sample2nw) and currents of-41) at (2n+1) w, 2nw), where
appears isotropic. In deep superconductivity and withm andn are integers ranging from negative to positive
an applied magnetic field, two states are visible in thanfinity. Using superposition to find the net voltage of
appearance of strong anisotropy. The first state correall of these image currents yields
sponds to the temperature range belwover which

the sample becomes fully superconducting. (With no j=o0

magnetic field applied, this temperature range is ap9 = (7d/8p)(Vi2/l34) + Z In(tarh (= (j + 0.5)K))
proximately zero.) The second state is chaotic and is j=0

located closer to absolute zero. Evidence of this state (11)
vanishes when there is no magnetic field applied. ~ In Equation 11 and later in 12, all VTCRs are pos-

In addition to our study of dimensional conduction, itive. Using Equation 11K can be solved with ex-
we found a correlation between sample porosity andellent accuracy by truncating the seriesj at 20. A
resistive parameters that supports earlier theories. ~ “brute force” solution, though slow, is both accurate

and manageable. We start by lettiKg=20.000 and
then solve the RHS in Equation 11. We repeat for
4. Appendix K =19.999 19.998, etc. When the RHS crosses zero,

If a sample is in the form of a disc whose thickness isthe value ofK is known with an error of less than
uniform but small compared to the dimensions of the0-001. If more accuracy is desired, the process may be
sample face, then van der Pauw’s theory can be used gxtended to the fourth decimal place.

measure the sample’s resistivity [16]. The sample can One now uses the method of image currents as above
have an arbitrary shape onits face (xy-plane), butit mus@ut letting the current, K enter at (0, 0) and leave at
have a constant thickness (z-axis). With four contactéw, 0). Then the equation to solve becomes

placed clockwise around the perimeter, the resistivity

can be calculated from voltage and current readings as j=%

0= (7d/8p)(Vas/la1) + ) In(tarh(r(j +0.5)/K))
0 = exp[—(p/d)(V12/I34)] J=0 (12)

+ exp[—(p/d)(V23/l41)] — 1 (10)  The solution of Equation 12 will give another value
of K. Also, Equations 11 and 12 can be solved again
whered is the sample thickness and where all voltage-using the VTCRs 0¥34/ 112 andV,1/123. Furthermore,
to-current ratios (VTCRS) are positivé,, is measured  all of these calculations can be done for a reversal of
across contacts 1, 2 while curreh; enters contact the polarity of the currents and voltages. This will give
3 and leaves at contact 4, etc. Because our data wetbe eight values oK. If 20 sets of measurements are
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taken, the average value Kfand a standard deviation 16
are based on 160 measurements. Standard deviatiohs H. C. MONTGOMERY, J. App. Phys42(1971) 2971.

for K were less than 0.4%.
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